Healing of injuries

Dr. Asela Mendis Senior Lecturer Faculty of Medicine Colombo

Healing of Lacerations, Abrasions & Punctures

Inflammatory Phase: inflammation, bleeding/clotting (0-48 hrs)

- Hageman factor (clotting factor 12) causes:
 - platelet plug formation and coagulation system activation (Factor X)
 - activation of compliment system
 - attraction of phagocytotic cells & inflammatory mediators (chemotaxis)
 - arachadonic acid cascade r u prostaglandins, thromboxanes, & leukotrienes
 - mast cells & basophils release histamine r u vascular permeability
 - platelets release serotonin r u vascular permeability
 - Kalikrein (inactive form of bradykinin) r u bradykinin r vasodilation
- In extracellular matrix, hyaluronic acid combines with fibronectin
 - fibronectin + hyalruonic acid r "framework" for cell migration
 - fibronectin adhesive glycoprotein located in blood & cell membranes
 - initial wound tensile strength provided by:
 - fibronectin hyaluronic acid "framework"
 - crosslinking of fibronectin & collagen
- Coagulation completed granulation tissue begins to form
 - granulation tissue: capillary buds, fibroblasts, macrophages
 - scar forming tissue

Fibroplastic phase - begins during inflammatory phase

- macrophages & granulocytes remove cell debris
- tissue hypoxia r formation of fragile capillary "buds"
 - happens within 24 hours of injury
 - Angiogenesis: buds proliferate & grow new circuits & also connect with existing capillaries
- fibroblast (golgi apparatus) produce collagen fibers that span wound
 - vitamin C & oxygen needed for collagen synthesis
- epithelium regenerates and proliferates beneath the clot
- wound contraction occurs
 - myofibroblasts located in wound margins have high actin content
 - myofibroblasts move toward the center of the wound & contract
 - ends of damaged tissue are pulled closer together
- Maturation phase mostly complete in 3 weeks to 6 months
 - breakdown & resynthesis of collagen parallel to tensile forces
 - may go on for years

Cutaneous Wound Healing Inflammatory Phase

Cutaneous Wound Healing Fibroplastic Phase

Healing by First & Second Intention

- Healing by first intention edges close together or wound edges brought together by sutures
 - Ioss of parenchymal (structural) tissue = amount of scar tissue
 - healing occurs faster
 - Iess change of infection
- Healing by second intention wound not closed / unable to be closed
 - examples: decubitus ulcers (bed sores), burns
 - significant loss of parenchymal tissue r u amount of scar tissue
 - healing occurs slower
 - greater chance of infection

Granulation Tissue or Scar Tissue

- Scar tissue is not as vascularized as original tissue
- Scar tissues is not as flexible, elastic, or strong as original tissue
- Scar tissue formed in a muscular organ may inhibit function
 - Examples: heart, bladder
- Scar tissue may form <u>adhesions</u> which connect adjacent organs
 - may cause loss of function (ligaments, bones, tendons)
- Scar tissue may form <u>contractures</u>
 - may form within a joint: loss of mobility & ROM
 - may form in skin or muscle fascia r loss of mobility & elasticity

Abrasions

- * Minor skin injuries
- * Caused by a shear force
- * Skin is scraped with sufficient force, usually in one direction, against a rough surface
- * The greater the applied force, the more layers of skin that are scraped away

Blisters

- * Minor skin injuries
- Caused by repeated application of shear in one or more directions
- * Occurs when a shoe rubs back and forth against foot
- Result is the formation of a pocket of fluid between the multiple layers of skin

Skin Bruises

- * Contusion
- Injuries resulting from compression sustained during a blow
- * Damage of the underlying capillaries
- * Causes the accumulation of blood within the skin

Incision and Laceration

- * Incision
 - * Clean cut
 - Produced by the application of a tensile force to the skin as it is stretched along a sharp edge

Laceration

- * Irregular tear in the skin
- * Typically results from a combination of tension and shear

Puncture Wound

- * Formed when a sharp object penetrates the skin and underlying tissues with tensile loading
- * Puncture wound can come from:
 - * Shoe spike
 - * Nail

Abrasions

- * Fresh
 - > Bleeding ____ Bright red
- * 12 -24 hrs
 - Blood dries up, bright scab
- * 2 -3 days
 - Reddish brown scab
- * **4 -7 days**
 - Epithelal growth beneath the scab
- * After 7 days
 - Scab darkens, retract falls off leaving initially pink area later which becomes pale/whitish

Contusions (Bruises)

- * Fresh Red
- * Few hours to 3 days blue
- * 4th day bluish black to brown
- * 5-6 days greenish
- * 7 12 days yellow
- * 2 weeks normal skin

Bone Injury Healing

* Three Phases Process

- * Acute Phase
- * Repair and Regeneration
- * Remodeling Phase

Acute Phase

- * Last approximately 4 days
- Hematoma is formed
- * Vasodilatation occurs
- * Edema
- Tissue chemical changes

Repair and Regeneration Phase

- Osteoclasts come to the area of injury to reabsorb damaged bone tissue
- * Osteoblasts build new bone
- * A callus is forms between the fractured bone ends
 - * A callus is a fibrous vascularized tissue containing immature bone
 - * Strengthens with time through remodeling phase
- Fixation devices are only implanted when it appears unlikely that the fracture will not heal properly

Remodeling Phase

- * Osteoblasts and Osteoclasts activity continues until normal shape and strength has restored
- Time is the largest requirement for proper none union to take place
- * Complete remodeling may take many years

